Combinatorial semi-bandit with known covariance
نویسندگان
چکیده
The combinatorial stochastic semi-bandit problem is an extension of the classical multi-armed bandit problem in which an algorithm pulls more than one arm at each stage and the rewards of all pulled arms are revealed. One difference with the single arm variant is that the dependency structure of the arms is crucial. Previous works on this setting either used a worst-case approach or imposed independence of the arms. We introduce a way to quantify the dependency structure of the problem and design an algorithm that adapts to it. The algorithm is based on linear regression and the analysis develops techniques from the linear bandit literature. By comparing its performance to a new lower bound, we prove that it is optimal, up to a poly-logarithmic factor in the number of pulled arms.
منابع مشابه
Stochastic Online Greedy Learning with Semi-bandit Feedbacks
The greedy algorithm is extensively studied in the field of combinatorial optimization for decades. In this paper, we address the online learning problem when the input to the greedy algorithm is stochastic with unknown parameters that have to be learned over time. We first propose the greedy regret and -quasi greedy regret as learning metrics comparing with the performance of offline greedy al...
متن کاملCombinatorial Bandits Revisited
This paper investigates stochastic and adversarial combinatorial multi-armed bandit problems. In the stochastic setting under semi-bandit feedback, we derive a problem-specific regret lower bound, and discuss its scaling with the dimension of the decision space. We propose ESCB, an algorithm that efficiently exploits the structure of the problem and provide a finite-time analysis of its regret....
متن کاملImproving Regret Bounds for Combinatorial Semi-Bandits with Probabilistically Triggered Arms and Its Applications
We study combinatorial multi-armed bandit with probabilistically triggered arms and semi-bandit feedback (CMAB-T). We resolve a serious issue in the prior CMAB-T studies where the regret bounds contain a possibly exponentially large factor of 1/p∗, where p∗ is the minimum positive probability that an arm is triggered by any action. We address this issue by introducing a triggering probability m...
متن کاملStochastic and Adversarial Combinatorial Bandits
This paper investigates stochastic and adversarial combinatorial multi-armed bandit problems. In the stochastic setting, we first derive problemspecific regret lower bounds, and analyze how these bounds scale with the dimension of the decision space. We then propose COMBUCB, algorithms that efficiently exploit the combinatorial structure of the problem, and derive finitetime upper bound on thei...
متن کاملTighter Regret Bounds for Influence Maximization and Other Combinatorial Semi-Bandits with Probabilistically Triggered Arms
We study combinatorial multi-armed bandit with probabilistically triggered arms and semi-bandit feedback (CMAB-T). We resolve a serious issue in the prior CMAB-T studies where the regret bounds contain a possibly exponentially large factor of 1/p, where p is the minimum positive probability that an arm is triggered by any action. We address this issue by introducing a triggering probability mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016